Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 16 de 16
Фильтр
1.
Biophys Rep ; 7(3): 193-206, 2021 Jun 30.
Статья в английский | MEDLINE | ID: covidwho-20237411

Реферат

Interleukin 6 (IL-6) is a cytokine with dual functions of pro-inflammation and anti-inflammation. It is mainly produced by mononuclear macrophages, Th2 cells, vascular endothelial cells and fibroblasts. IL-6 binds to glycoprotein 130 and one of these two receptors, membrane-bound IL-6R or soluble IL-6R, forming hexamer (IL-6/IL-6R/gp130), which then activates different signaling pathways (classical pathway, trans-signaling pathway) to exert dual immune-modulatory effects of anti-inflammation or pro-inflammation. Abnormal levels of IL-6 can cause multiple pathological reactions, including cytokine storm. Related clinical studies have found that IL-6 levels in severe COVID-19 patients were much higher than in healthy population. A large number of studies have shown that IL-6 can trigger a downstream cytokine storm in patients with COVID-19, resulting in lung damages, aggravating clinical symptoms and developing excessive inflammation and acute respiratory distress syndrome (ARDS). Monoclonal antibodies against IL-6 or IL-6R, such as tocilizumab, sarilumab, siltuximab and olokizumab may serve as therapeutic options for COVID-19 infection.

2.
Talanta ; 2023.
Статья в английский | EuropePMC | ID: covidwho-2287601

Реферат

The outbreak of the novel coronavirus (SARS-CoV-2) has seriously harmed human health and economic development worldwide. Studies have shown that timely diagnosis and isolation are the most effective ways to prevent the spread of the epidemic. However, the current polymerase chain reaction (PCR) based molecular diagnostic platform has the problems of expensive equipment, high operation difficulty, and the need for stable power resources support, so it is difficult to popularize in low-resource areas. This study established a portable (<300 g), low-cost (<$10), and reusable molecular diagnostic device based on solar energy photothermal conversion strategy, which creatively introduces a sunflower-like light tracking system to improve light utilization, making the device suitable for both high and low-light areas. The experimental results show that the device can detect SARS-CoV-2 nucleic acid samples as low as 1 aM within 30 min. Graphical abstract Image 1

3.
Biosens Bioelectron ; 230: 115248, 2023 Jun 15.
Статья в английский | MEDLINE | ID: covidwho-2288684

Реферат

The CRISPR/Cas system is known as one of the directions of the next generation of mainstream molecular diagnostic technology. However, most current CRISPR/Cas molecular diagnostics still rely on the pre-amplification of nucleic acid due to the limited sensitivity of CRISPR/Cas alone, which has no significant advantage over commercial Taqman-PCR and TwistAmp® Exo kits. Herein, we report an aM-level sensitive cascade CRISPR-Dx system (ASCas) that eliminates nucleic acid pre-amplification, thus avoiding aerosol contamination and greatly reducing the testing environment and personnel skill requirements for molecular diagnostics. Most importantly, the Cas13a nucleases with high sensitivity and trans-cleavage efficiency can rapidly cleaved RNA bubbles on the hybridized cascade probe at low concentration target RNA detection, which results in the destruction of the cascade probe and releases a large amount of trigger DNA for further signal amplification of secondary Cas12a reactions. Therefore, the ASCas system achieves amplification-free, ultra-sensitivity (1 aM), and ultra-fast (20 min) RNA detection. In addition, the ASCas system replaces the complicated screening process of primers and probes with the programmed Cas13a-crRNA design so that a suitable detection system can be constructed more quickly and straightforwardly for the mutation-prone SARS-CoV-2 virus.


Тема - темы
Biosensing Techniques , COVID-19 , Nucleic Acids , Humans , RNA , COVID-19/diagnosis , SARS-CoV-2/genetics , CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques
4.
Talanta ; 258: 124422, 2023 Jun 01.
Статья в английский | MEDLINE | ID: covidwho-2287602

Реферат

The outbreak of the novel coronavirus (SARS-CoV-2) has seriously harmed human health and economic development worldwide. Studies have shown that timely diagnosis and isolation are the most effective ways to prevent the spread of the epidemic. However, the current polymerase chain reaction (PCR) based molecular diagnostic platform has the problems of expensive equipment, high operation difficulty, and the need for stable power resources support, so it is difficult to popularize in low-resource areas. This study established a portable (<300 g), low-cost (<$10), and reusable molecular diagnostic device based on solar energy photothermal conversion strategy, which creatively introduces a sunflower-like light tracking system to improve light utilization, making the device suitable for both high and low-light areas. The experimental results show that the device can detect SARS-CoV-2 nucleic acid samples as low as 1 aM within 30 min.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Polymerase Chain Reaction/methods , Sensitivity and Specificity , COVID-19 Testing
5.
ACS Appl Mater Interfaces ; 2023 Feb 13.
Статья в английский | MEDLINE | ID: covidwho-2262158

Реферат

Developing a rapid antibody-based detection method is of great importance for preventing and controlling the spread of coronavirus disease 2019 (COVID-19). Among the antibody-based methods for point-of-care (POC) detection, lateral flow immunoassay (LFIA) is the most widely used. However, LFIA still has the disadvantage of low sensitivity. In this work, an ReSe2 nanosheet with a thickness of 10-20 nm was prepared by liquid exfoliation and applied as the label in a photothermal LFIA due to its high photothermal conversion efficiency and high photothermal stability. An integrated detection device was introduced for rapid, on-site, and highly sensitive assay of the human antisevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike (S) protein IgG antibodies. The device mainly included a rhenium diselenide (ReSe2) nanosheet-based photothermal LFIA, a portable laser, and a smartphone with a portable thermal imager, which was used to record and analyze the thermal signal of the LFIA test zone. The human anti-SARS-COV-2 S protein IgG antibodies in buffer solution can be detected in a portable box within 10 min, with a thermal signal detection limit of 0.86 ng mL-1, which was 108-fold lower than that of the colorimetric signal. The integrated device can detect values as low as 2.76 ng mL-1 of the human anti-SARS-COV-2 S protein IgG antibodies in 50% serum. The integrated device showed great potential for rapid and home self-testing diagnosis of COVID-19.

6.
Viruses ; 15(1)2023 Jan 04.
Статья в английский | MEDLINE | ID: covidwho-2271892

Реферат

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Flavonols , Spike Glycoprotein, Coronavirus/metabolism , Protein Binding
7.
Anal Chem ; 95(12): 5316-5322, 2023 03 28.
Статья в английский | MEDLINE | ID: covidwho-2269977

Реферат

Active enrichment can detect nucleic acid at ultra-low concentrations without relatively time-consuming polymerase chain reaction (PCR), which is an important development direction for future rapid nucleic acid detection. Here, we reported an integrated active enrichment platform for direct hand-held detection of nucleic acid of COVID-19 in nanoliter samples without PCR. The platform consists of a capillary-assisted liquid-carrying system for sampling, integrated circuit system for ultrasound output, and cell-phone-based surface-enhanced Raman scattering (SERS) system. Considering the acoustic responsiveness and SERS-enhanced performance, gold nanorods were selected for biomedical applications. Functionalized gold nanorods can effectively capture and enrich biomarkers under ultrasonic aggregation. Such approaches can actively assemble gold nanorods in 1-2 s and achieved highly sensitive (6.15 × 10-13 M) SERS detection of COVID-19 biomarkers in nanoliter (10-7 L) samples within 5 min. We further demonstrated the high stability, repeatability, and selectivity of the platform, and validated its potential for the detection of throat swab samples. This simple, portable, and ultra-trace integrated active enrichment detection platform is a promising diagnostic tool for the direct and rapid detection of COVID-19.


Тема - темы
COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , Point-of-Care Systems , COVID-19/diagnosis , Spectrum Analysis, Raman , Gold
8.
Biosens Bioelectron ; 220: 114903, 2023 Jan 15.
Статья в английский | MEDLINE | ID: covidwho-2104438

Реферат

The outbreak of COVID-19 has created a huge challenge to global health systems. Experience in fighting the epidemic shows that the development of a rapid and sensitive POCT diagnostic platform for SARS-CoV-2 that can be deployed in situ is crucial to contain the outbreak. Here, we have developed a portable microdroplet detection platform that integrated temperature controller and micro-stirring for high-throughput and ultrafast COVID-19 diagnosis. Such a device uses a p-n junction (PN junction) as the temperature controller to adjust the temperature in a single microdroplet independently and precisely, ensuring the amplification of reverse transcription loop-mediated isothermal amplification (RT-LAMP). Meanwhile, the platform incorporates an ultrasonic micro-stirring unit, greatly increasing the interaction between RT-LAMP molecules and accelerating the amplification. The results show good linearity over a wide linear range (1 to 105 copies/µL) and low LOD (0.48 copy/µL). Our method reports in only 6.1 min for high-viral load samples, and combines with sample preparation, the total detection process could be done within 30 min. Such a portable and fully integrated microdroplet molecular diagnostic platform is a promising tool for point-of-care diagnosis of COVID-19 and other infectious diseases in resource-limited settings.


Тема - темы
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Temperature , COVID-19 Testing
9.
Anal Chim Acta ; 1234: 340523, 2022 Nov 22.
Статья в английский | MEDLINE | ID: covidwho-2068605

Реферат

Sensitive and accurate detection of SARS-CoV-2 methods is meaningful for preventing and controlling the novel coronavirus. The detection techniques supporting portable, onsite, in-time, and online data transfer are urgently needed. Here, we one-click investigated the shape influence of silver nanostructures on SERS performance and their applications in the sensitive detection of SARS-CoV-2. Such investigation is achieved by adjusting multiple parameters (concentration, potential, and time) on the integrated electrochemical array, thus various morphologies (e.g., bulk, dendritic, globular, and spiky) can be one-click synthesized. The SERS performance results indicated that dendritic nanostructures are superior to the other three with an order of magnitude signal enhancement. Such on-electrode dendritic silver substrate also represents high sensitivity (LOD = 7.42 × 10-14 M) and high reproducibility (RSD = 3.67%) toward the SARS-CoV-2 RNA sequence detection. Such approach provides great potentials for rapid diagnosis and prevention of diverse infectious diseases.


Тема - темы
COVID-19 , Metal Nanoparticles , Nanostructures , Humans , Silver/chemistry , Spectrum Analysis, Raman/methods , COVID-19/diagnosis , Reproducibility of Results , RNA, Viral , SARS-CoV-2 , Metal Nanoparticles/chemistry
10.
Advanced functional materials ; 2022.
Статья в английский | EuropePMC | ID: covidwho-2057270

Реферат

High electrocatalytic activity with tunable luminescence is crucial for the development of electrochemiluminescence (ECL) luminophores. In this study, a porphyrin‐based heterobimetallic 2D metal organic framework (MOF), [(ZnTCPP)Co2(MeIm)] (1), is successfully self‐assembled from the zinc(II) tetrakis(4‐carboxyphenyl)porphine (ZnTCPP) linker and cobalt(II) ions in the presence of 2‐methylimidazole (MeIm) by a facile one‐pot reaction in methanol at room temperature. On the basis of the experimental results and the theoretical calculations, the MOF 1 contains paddle–wheel [Co2(‐CO2)4] secondary building units (SBUs) axially coordinated by a MeIm ligand, which is very beneficial to the electron transfer between the Co(II) ions and oxygen. Combining the photosensitizers ZnTCPP and the electroactive [Co2(‐CO2)4] SBUs, the 2D MOF 1 possesses an excellent ECL performance, and can be used as a novel ECL probe for rapid nonamplified detection of the RdRp gene of SARS‐CoV‐2 with an extremely low limit of detection (≈30 aM). A novel porphyrin‐based heterobimetallic 2D MOF, [(ZnTCPP)Co2(MeIm)] (1) is constructed to act as an excellent electrochemiluminescence probe for rapid nonamplified detection of SARS‐CoV‐2.

11.
Anal Chem ; 94(10): 4135-4140, 2022 03 15.
Статья в английский | MEDLINE | ID: covidwho-1721379

Реферат

Rapid and high-throughput screening is critical to control the COVID-19 pandemic. Recombinase polymerase amplification (RPA) with highly accessible and sensitive nucleic acid amplification has been widely used for point-of-care infection diagnosis. Here, we report an integrated microdroplet array platform composed of an ultrasonic unit and minipillar array to enhance the RPA for ultrafast, high-sensitivity, and high-throughput detection of SARS-CoV-2. On such a platform, the independent microvolume reactions on individual minipillars greatly decrease the consumption of reagents. The microstreaming driven by ultrasound creates on-demand contactless microagitation in the microdroplets and promotes the interaction between RPA components, thus greatly accelerating the amplification. In the presence of microstreaming, the detection time is 6-12 min, which is 38.8-59.3% shorter than that of controls without microstreaming, and the end-point fluorescence intensity also increased 1.3-1.7 times. Furthermore, the microagitation-enhanced RPA also exhibits a lower detection limit (0.42 copy/µL) for SARS-CoV-2 in comparison to the controls. This integrated microdroplet array detection platform is expected to meet the needs for high-throughput nucleic acid testing (NAT) to improve the containment of viral transmission during the epidemic, as well as provide a potential platform for the timely detection of other pathogens or viruses.


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral/genetics , Recombinases , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
Anal Methods ; 13(45): 5418-5435, 2021 11 25.
Статья в английский | MEDLINE | ID: covidwho-1521868

Реферат

The global pandemic caused by the SARS-CoV-2 (COVID) virus indiscriminately impacted people worldwide with unquantifiable and severe impacts on all aspects of our lives, regardless of socioeconomic status. The pandemic brought to light the very real possibility of pathogens changing and shaping the way we live, and our lack of preparedness to deal with viral/bacterial outbreaks. Importantly, the quick detection of pathogens can help prevent and control the spread of disease, making the importance of diagnostic techniques undeniable. Point-of-care diagnostics started as a supplement to standard lab-based diagnostics, and are gradually becoming mainstream. Because of this, and their importance in detecting pathogens (especially in the developing world), their development has accelerated at an unprecedented rate. In this review, we highlight some important and recent examples of point-of-care diagnostics for detecting nucleic acids, proteins, bacteria, and other biomarkers, with the intent of making apparent their positive impact on society and human health.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Point-of-Care Systems , Point-of-Care Testing
13.
Front Bioeng Biotechnol ; 9: 753692, 2021.
Статья в английский | MEDLINE | ID: covidwho-1470752

Реферат

With the outbreak and pandemic of COVID-19, point-of-care testing (POCT) systems have been attracted much attention due to their significant advantages of small batches of samples, user-friendliness, easy-to-use and simple detection. Among them, flexible biosensors show practical significance as their outstanding properties in terms of flexibility, portability, and high efficiency, which provide great convenience for users. To construct highly functional flexible biosensors, abundant kinds of polymers substrates have been modified with sufficient properties to address certain needs. Paper-based biosensors gain considerable attention as well, owing to their foldability, lightweight and adaptability. The other important flexible biosensor employs textiles as substrate materials, which has a promising prospect in the area of intelligent wearable devices. In this feature article, we performed a comprehensive review about the applications of flexible biosensors based on the classification of substrate materials (polymers, paper and textiles), and illustrated the strategies to design effective and artificial sensing platforms, including colorimetry, fluorescence, and electrochemistry. It is demonstrated that flexible biosensors play a prominent role in medical diagnosis, prognosis, and healthcare.

14.
Sens Actuators B Chem ; 348: 130708, 2021 Dec 01.
Статья в английский | MEDLINE | ID: covidwho-1386623

Реферат

Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.

15.
Free Radic Biol Med ; 175: 216-225, 2021 11 01.
Статья в английский | MEDLINE | ID: covidwho-1377715

Реферат

Nitric oxide (NO) plays an important role in cardiovascular and immune systems. Quantification of blood nitrite and nitrate, two relatively stable metabolites of NO (generally as NOx), has been acknowledged, in part, representing NO bioactivity. Dysregulation of NOx had been reported in SARS-CoV-2 infected populations, but whether patients recovered from COVID-19 disease present with restored NOx is unknown. In this study, serum NO2- and NO3- were quantified and analyzed among 109 recovered adults in comparison to a control group of 166 uninfected adults. Nitrite or nitrate levels were not significantly different among mild-, common-, severe- and critical-type patients. However, these recovered patients had dramatically lower NO2- and NO2-/NO3- than the uninfected group (p < 0.0001), with significantly higher NO3- levels (p = 0.0023) than the uninfected group. Nitrate and nitrite/nitrate were positively and negatively correlated with patient age, respectively, with age 65 being a turning point among recovered patients. These results indicate that low NO2-, low NO2-/NO3- and high NO3- may be potential biomarkers of long-term poor or irreversible outcomes after SARS-CoV-2 infection. It suggests that NO metabolites might serve as a predictor to track the health status of recovered COVID-19 patients, highlighting the need to elucidate the role of NO after SARS-CoV-2 infection.


Тема - темы
COVID-19 , Nitrites , Adult , Aged , Biomarkers , Humans , Nitrates , Nitric Oxide , SARS-CoV-2
16.
Chem Soc Rev ; 50(6): 3656-3676, 2021 Mar 21.
Статья в английский | MEDLINE | ID: covidwho-1132110

Реферат

The novel human infectious coronaviruses (CoVs) responsible for severe respiratory syndromes have raised concerns owing to the global public health emergencies they have caused repeatedly over the past two decades. However, the ongoing coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received unprecedented attention internationally. Monitoring pathogenic CoVs in environmental compartments has been proposed as a promising strategy in preventing the environmental spread and tracing of infectious diseases, but a lack of reliable and efficient detection techniques is still a significant challenge. Moreover, the lack of information regarding the monitoring methodology may pose a barrier to primary researchers. Here, we provide a systematic introduction focused on the detection of CoVs in various environmental matrices, comprehensively involving methods and techniques of sampling, pretreatment, and analysis. Furthermore, the review addresses the challenges and potential improvements in virus detection techniques for environmental surveillance.


Тема - темы
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Environmental Monitoring/methods , Pandemics , SARS-CoV-2/isolation & purification , Aerosols/analysis , COVID-19/transmission , Fomites/virology , High-Throughput Nucleotide Sequencing , Humans , Immunoassay , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sewage/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wastewater/virology
Критерии поиска